首页> 外文OA文献 >Performance of the stochastic MV-PURE estimator in highly noisy settings
【2h】

Performance of the stochastic MV-PURE estimator in highly noisy settings

机译:在高噪声环境中随机mV-pURE估计器的性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The stochastic MV-PURE estimator has been developed to provide linearestimation robust to ill-conditioning, high noise levels, and imperfections inmodel knowledge. In this paper, we investigate the theoretical performance ofthe stochastic MV-PURE estimator under varying level of additive noise. Moreprecisely, we prove that the mean-square-error (MSE) of this estimator in thelow signal-to-noise (SNR) region is much smaller than that obtained with itsfull-rank version, the minimum-variance distortionless estimator, and that thegap in performance is the larger the higher the noise level. These results shedlight on the excellent performance of the stochastic MV-PURE estimator inhighly noisy settings obtained in simulations so far. We extend here previouslyconducted numerical simulations to demonstrate a new insight provided byresults of this paper in practical applications.
机译:已开发出随机MV-PURE估计器,以提供对疾病,高噪声水平和模型知识不完善的鲁棒线性估计。在本文中,我们研究了随机MV-PURE估计量在附加噪声水平变化下的理论性能。更准确地说,我们证明了该估计器在低信噪比(SNR)区域中的均方误差(MSE)远小于采用其全秩版本,最小方差无失真估计器和差距性能越高,噪声水平越高。这些结果说明了迄今为止在模拟中获得的高噪声设置下随机MV-PURE估计器的出色性能。我们在这里扩展先前进行的数值模拟,以证明本文的结果在实际应用中提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号